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We study the nature of the fitness landscapes of a “quenched” Kauffman’s Boolean model with a scale-free
network. We have numerically calculated the rugged fitness landscapes, the distributions, their tails, and the
correlation between the fitness of local optima and their Hamming distance from the highest optimum found,
respectively. We have found that �a� there is an interesting difference between random and scale-free networks
such that the statistics of the rugged fitness landscapes is Gaussian for the random network while it is
non-Gaussian with a tail for the scale-free network; �b� as the average degree �k� increases, there is a phase
transition at the critical value of �k�= �k�c=2, below which there is a global order and above which the order
goes away.
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I. INTRODUCTION

The origin of life is one of the most important unsolved
problems in science �1�. To answer the quest, the self-
organization of matter �2� and the emergence of order �3�
have been regarded as key ideas. To investigate such ideas,
as early as in 1969 Kauffman introduced the so-called NK
Kauffman model—a random Boolean network model based
upon the random network theory �4�. This model has been a
prototype model and studied by many authors for a long time
to understand complex systems such as metabolic stability
and epigenesis, genetic regulatory networks, and transcrip-
tional networks �3� as well as general Boolean networks
�5–8�, neural networks �9�, and spin glasses �10�.

At nearly the end of 1990s new kinds of networks, called
scale-free networks, were discovered from studying the
growth of internet geometry and topology �11–13�. After the
discovery, scientists have known that many systems such as
those which were originally studied by Kauffman as well as
other various systems such as internet topology, human
sexual relationship, scientific collaboration, economical net-
work, etc., belong to the category of scale-free networks.
Therefore, it is very interesting for us to know what will
happen when we apply the concepts of scale-free networks to
Kauffman’s Boolean network models.

Recently, there have just started some studies in this di-
rection �14–21�. There, the Boolean dynamics of the Kauff-
man model with a scale-free network has been intensively
studied. We would like to shortly call this the scale-free �SF�
Kauffman model. Hence, there are many interesting prob-
lems that are necessary to be considered.

Thus, in this paper we would like to study the structure of
the rugged fitness landscapes of the SF Kauffman model. We
would like to know what the difference is in the fitness land-

scapes between the NK and SF Kauffman models.
The organization of the paper is the following: In Sec. II,

we summarize the formalism of the Boolean dynamics of the
NK Kauffman model. In Sec. III, we introduce the formalism
to calculate the statistics and rugged fitness landscapes of the
NK Kauffman model. And our scheme to obtain a scale-free
network is given. In Sec. IV, we show the numerical results
of the rugged fitness landscapes, of the histograms and their
tails, and of the correlation between the fitness of local op-
tima and their Hamming distance from the highest optimum
found, for both “quenched” NK and SF models, respectively.
In Sec. V, our conclusion will be given.

II. NK KAUFFMAN MODEL

In the NK model �the SF model is described below�, we
assume that the total number of nodes �vertices� N and the
degree �i.e., the number of inputs� of the ith node ki in the
network are fixed such that all ki=K. Therefore, the resultant
graph is a directed random network, where each link has its
own direction as represented by an arrow on the link. This
gives us in general an asymmetric adjacency matrix of net-
work theory. Since there are K inputs to each node, 2K Bool-
ean spin configurations can be defined on each node; the
number 2K certainly becomes very large as K becomes a
large number.

We then assume that Boolean functions are randomly cho-
sen on each node from the 22K

possibilities. Locally this can
be represented by

�i
�t+1� = Bi��i

�t�;�i1
�t�, . . . ,�iki

�t�� , �1�

for i=1, . . . ,N, where �i�Z2��0,1	 is the binary state and
Bi�Z2 is a Boolean function at the ith node, randomly cho-
sen from 22ki+1

Boolean functions with the probability p �or
1− p� to take 1 �or 0�.

If we fix the set of the randomly chosen Boolean func-
tions �Bi , i=1, . . . ,N	 in the course of the time development,
then this model is called the quenched model �3�. On the

*Electronic address: kazumoto@stannet.ne.jp.
†Electronic address: f01j006g@mail.cc.niigata-u.ac.jp.
‡Electronic address: hyamada@uranus.dti.ne.jp.

PHYSICAL REVIEW E 72, 061901 �2005�

1539-3755/2005/72�6�/061901�6�/$23.00 ©2005 The American Physical Society061901-1

http://dx.doi.org/10.1103/PhysRevE.72.061901


other hand, if we change the set each time, then this model is
called the annealed model �5,6�. If we study the dynamics of
the states in the system taking care of Eq. �1�, then we are
able to obtain the cyclic structures of the states such as the
length of the cycle, the transient time, the basin sizes, etc.
These are usually calculated numerically, since it is ex-
tremely difficult to do the calculations analytically �3,7,8�.

However, in the annealed models �5,6�, it has been
investigated analytically that as the degree of nodes K is
increasing, there exists a kind of phase transition of networks
at the critical degree Kc=1/ �2p�1− p��, and if we conversely
solve it for p, then we obtain the critical probability
pc= �1±
1−2/K� /2.

III. FITNESS LANDSCAPE MODEL

Let us now study statistics in the structure of the fitness
landscapes of the NK and SF Kauffman models. The fitness
landscapes are calculated as follows �3�: �i� Generate a net-
work with N nodes and degree ki of the ith node. The ki links
are inputs that are directed to the ith node. �ii� Define the
local fitness at the ith node by

Wi = f i��i;�i1
, . . . ,�iki

� �2�

for i=1, . . . ,N, where Wi takes one of 2ki+1 real numbers �i
which are randomly taken from the interval �0,1�. This pro-
vides us a table for each node �Table I�. �iii� Define an
N-component initial state A—say, �A= �0,1 ,1 , . . . ,0�. �iv�
Investigate the input states on ki links for the ith node. And
adjusting the states in the entries with the table, choose the
fitness Wi from the 2ki+1 values of w1 ,w2 , . . . ,w2ki+1. Then,
define the fitness WA for the state A by

WA =
1

N
�
i=1

N

Wi. �3�

�v� Each state forms a vertex of the N-dimensional hyper-
cube so that there are totally 2N vertices, each of which has
its N neighbors such as �B= �1,1 ,1 , . . . ,0� �i.e., one-mutant
variants, denoted by nomv�. Then, calculate the fitnesses WB

for these neighbor states in the same way. �vi� Compare the
fitness value WA of the A state with those of the neighbor
states such as WB, successively. Here the Hamming distances
between the state and its neighbors are all 1. If WA�WB for
all neighbors B’s, then the fitness WA for the A state is a local
optimum. And if we meet a neighbor B such that WA�WB,
then write B=A� and WB=WA�. Redo the same procedure
with all neighbors to obtain WA�, WA�, etc., until the local
optimum is found. �vii� Finally, measure the difference be-
tween each fitness of the neighbors and the local optimum
fitness. This provides us a rugged fitness landscape of the
system.

The above procedure starts from the particular initial state
with the set of the random numbers Wi. Since we can change
either the initial state to a different state in the 2N states or
the set to a different set chosen randomly, we can generate
many samples. Each sample results in a different rugged fit-
ness landscape of the system. Hence, we obtain an ensemble
of them. Thus we can study the statistics of the structures of
rugged fitness landscapes �22�. In this paper we take 1000
samples for the purpose.

To apply the above method to the SF Kauffman model,
we have to specify a model for the scale-free network
with an arbitrary degree of nodes, �k�=n, even integer. For
this purpose, let us adopt a slightly modified version of
the so-called Albert-Barabási �AB� model �12� as a prototype
model. In our model, we initially start with m0=n /2
nodes for seeds of the system, all of which are linked to
each other such that the total link number is n�n−2� /8.
And every time when we add one node to the system,
m=n /2 new links are randomly chosen in the previously
existing network, according to the preferential attachment
probability of �i�ki�=ki /� j=1

N−1kj. Then, after t steps, we
obtain the total numbers of nodes N�t�=n /2+ t and of links
L�t�=n�n−2� /8+ �n /2�t, respectively. We continue this
process until the system size N is achieved. Hence, by this
we can define �k��2L�t� /N�t�=n as t→�. The generaliza-
tion can be straightforward. Now we apply the above-
mentioned dynamics to this modified AB model and call the
result the SF Kauffmann model �3�.

IV. NUMERICAL RESULTS

A. Rugged fitness landscapes

Figure 1 shows the rugged fitness landscapes of both the
“quenched” random NK and the “quenched” SF Kauffman
models. Here we have calculated the systems up to N=256.
This is just because of our computer power at this moment.
We only show the data for N=256 in this paper. As previ-
ously noted by Kauffman �3� the fitness landscapes of the
random networks are very rugged. We see that the fitness
landscapes of scale-free networks are very rugged as well,
but quite different from those of the random networks. This
can be understood as follows: In the random network each
one of the nodes always meets with the same K links to the
neighbors. The ruggedness can be dominantly bounded by
the value of K. Hence, as K becomes large, the fluctuations
in the rugged fitness landscapes become large. On the other

TABLE I. The relationship between the �real� output Wi and the
�binary� inputs ��i1

,�i2
, ¯ ,�iki

,�i	. Since there are �ki+1� �i’s,

each of which has 0 or 1, there are 2ki+1 ways of inputs. These
provide 2ki+1 �i’s, each of which is a number randomly drawn from
the interval �0,1�, according to a homogeneous distribution.

�i1
�i2

¯ �iki
�i Wi

0 0 ¯ 0 0 �1

0 0 ¯ 0 1 �2

0 0 ¯ 1 0 �3

0 0 ¯ 1 1 �4

] ] ] ] ] ]

1 1 ¯ 1 1 �2ki+1
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hand, in the scale-free network there are various kinds of
degrees ki of nodes. In other words, each node has its own ki
links and there is the distribution of the degrees such as
P�k�	k−
. The AB model exhibits a power law with 
=3.
Therefore, the fitness landscapes can fluctuate, according to
the degree distribution of the network. So, as the degree ki of
a node is large, the difference in the fitness between the

optimum and mutants is expected to be large. Hence, the
fitness landscapes obey the nature of the scale-free network.

B. Histograms and tails of rugged fitness landscapes

How can we detect the differences in the rugged
fitness landscapes between the random and the scale-free
networks? To do so, denote by h the histogram and denote
by D the fitness difference between the local optimum and
the one-mutant variant. Then we draw the histograms
of the rugged fitness landscapes in the normal plot ��a� and
�c��, in the log-log plot ��b� and �d��, and in the semilog plot
�insets�, respectively �Fig. 2�. Comparing �a� with �c� in
the numerical results, we find that the histograms of the
fitness landscapes for the random networks behave
like Gaussian distributions, which can be fitted by
h	e−�D − �D��2/v2

where we set the peak value as �D� and the
variance as v=
���D�2� with �D=D− �D�. We have
found numerically that �D�= �0.943,2.62,5.85	�10−3 and
v= �4.31,5.75,7.58	�10−3 for K=2,4 ,8, respectively. On
the other hand, the histograms for the scale-free networks
behave like non-Gaussian distributions with a broad tail,
which can be fitted by

h 	 �e−�D − �D��2/v2
if D is very closed to �D�

e−
�D−�D��/v if D is not so larger than �D� ,

D−� if D is much larger than �D� .

 �4�

Here we have found numerically that
�D�= �1.48,2.74,5.27	�10−3; v= �3.45,4.67,5.53	�10−3;

FIG. 1. �Color online� Rugged fitness landscapes of the
“quenched” random NK and of the “quenched” SF Kauffman mod-
els, where the total number of nodes is given by N=256. �a�–�d� are
shown for the random networks of K=2,4 ,8 ,16, respectively, and
�e�–�h� for the scale-free networks of �k�=2,4 ,8 ,16, respectively,
where �k� means the average degree of nodes. In each figure, the
vertical axis shows the fitness while the horizontal axis shows the
family of all one-mutant variants nomv of a local optimum. The
dotted line denotes the fitness level of the local optimum and the
curve the fitness differences between the local optimum and all the
one-mutant variants.

FIG. 2. �Color online� The number of times h when a particular
value of the fitness difference D between a local optimum and nomv
occurs in the rugged fitness landscapes. Here the “quenched” mod-
els have been adopted. �c� and �d� ��a� and �b�� show the histograms
and the tails for the scale-free �random� networks of �k�= �K= �2
���, 4 ���, 8 ���, respectively, where N=256. Here �k� stands for
the average degree of nodes. The data for 1000 samples are super-
imposed in each figure. �b� and �d� �inset� are shown in the log-log
�semilog� plot of the tails.
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=1.30,1.21,0.978; �=3.11,3.50,2.98, for �k�=2,4 ,8,
respectively.

We note here the following: �a� The tail �i.e., scaling be-
havior� appears when the system size becomes as large as
N=256. And as the value of �k� is increasing, the value of �
seems closer to 
=3 of P�k� in the AB model �12� �Fig.
2�d��. But in view of the limited accuracy of Fig. 2�d� �e.g.,
�=3.50, 2.98�, at the present moment this can be a conjec-
ture, speculated from the numerical results for the system of
N=256. However, in Appendix A we give sharp analytical
arguments showing a strict relation between the power-law
decay and the “degree” fluctuations. And also, since we ex-
tend the system up to N=1024, we are able to confirm our-
selves that the tail behavior is maintained and becomes more
prominent, as N is increasing. As an example, we show the
result in Appendix B.

�b� The results for the random networks show a kind of
transition when the value of K is going up from K=2 to
K=8. This is consistent with the critical value of Kc=2 for
p=0.5 which was analytically obtained from the annealed
model �5�. Therefore, the distribution below Kc is quite
different from that above Kc so that the distributions for
K�Kc become more Gaussian like as K increases. Very in-
terestingly, we find a similar transition for the scale-free
networks as well, when the value of �k� is going up from
�k�=2 to �k�=8.

This can be explained as follows: Suppose the distribution
of degrees is approximately given by P�k�=k−
 /��
� such
that we can impose normalization �k=1

� P�k�=1, where ��
� is
the Riemann’s zeta function defined by ��
�=�k=1

� k−
. Sub-
stituting it to the definition �k�=�k=1

� kP�k�, then we obtain

�k� = ��
 − 1�/��
� , �5�

which is finite for 
�2 and infinite for 1�
�2 and which
was first obtained by Aldana and Cluzel �19�. For example,
since 
=3 for the special case of the AB model, we obtain
�k�=��2� /��3�=1.644 93. . . /1.202 05. . . �1.3684. As stud-
ied by Aldana et al. �8,19�, the critical value �k�c for
the annealed dynamics of the SF Kauffman model is given
by �k�c=��
c−1� /��
c�=2 for p=0.5 as well, where

c�2.478 75. Within the limited accuracy of our numerical
results �some 20%� this is the same value as just stated for
the quenched dynamics. In fact, we expect that also for our
quenched dynamics there is a critical point around �k�c=2,
with � around 3, maybe again exactly at these values. In fact,
in Appendix A we show that also in our case the statistics of
the rugged fitness landscape is bounded by K, such that �
reflects the fluctuations of the “degree,” which should be the
same both for the quenched and the annealed dynamics
�8,19�. Thus, our numerical results support this analytical
result, although our system is not very large, but a finite
scale-free network of N=256. We also note here that
we confirm that the phase transition at the critical value of
�k�= �k�c=2, which was proved analytically in the “annealed”
model by Aldana and Cluzel �19�, occurs in the “quenched”
model as well �23�.

C. Correlation between the fitness of local optima and their
Hamming distance from the highest optimum found

Finally we present the correlation between the fitness of
local optima and their Hamming distance from the highest
optimum found �3� �Fig. 3�. In both the random and scale-

FIG. 3. �Color online� The correlation between the fitness of local optima and their Hamming distance from the highest optimum found.
It is shown for the random networks with K=2 �a�, 4 �b�, and 8 �c� and for the scale-free networks with �k�=2 �d�, 4 �e�, and 8 �f�,
respectively, where N=256. The vertical axis stands for the fitness and the horizontal axis the Hamming distances between the largest local
optimum and the local optima. The data for 1000 samples are superimposed in each figure. In both cases there seem to exist phase
transitions—i.e., at K=Kc=2 for the random networks and �k�= �k�c=2 for the scale-free networks—supporting the exact statement for the
“annealed” version of the first mentioned case and the analytical prediction of Aldana et al. on the annealed version of the SF model.
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free networks we find the following: If K and �k� are as small
as the critical value of 2, then the highest optima are nearest
to one another. And the optima at successively greater Ham-
ming distances from the highest optimum are successively
less fit. Therefore, there is a global order to the landscape.
On the other hand, as K and �k� increase, the correlations fall
away. This shows that the previous assertions are maintained
in the correlations, respectively.

V. CONCLUSIONS

In conclusion, we have studied the structure and statistics
of the rugged fitness landscapes for the quenched SF Kauff-
man models, comparing with that for the quenched random
NK Kauffman models. We have numerically calculated the
rugged fitness landscapes, the distributions, the tails, and
the fitness correlations of local optima with the Hamming
distance from the highest optimum, respectively. From
the results, we have concluded that in the SF Kauffman mod-
els there is a transition of network when �k�= �k�c=2, while
in the NK Kauffman models such a transition occurs at
K=Kc=2. This is, in some sense, quite analogous to the situ-
ation in the study of Boolean dynamics of NK and SF Kauff-
man models �8�. It would be very interesting if we could
apply this approach to study fitness landscapes of other net-
work systems.
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APPENDIX A: ANALYTICAL ARGUMENTS OF
RELATION BETWEEN THE POWER-LAW DECAY AND

THE “DEGREE” FLUCTUATIONS

The tail behavior of the histogram is interpreted as fol-
lows.

Define a network with N nodes, which can be any kind of
network such as random, scale-free, and exponential-
fluctuating networks, where the ith node has ki degree �i.e.,
link number�. Let us consider the Kauffman model. As given
in Table I, the number of inputs to the ith node is given by
ki+1. Let us now choose an N-dimensional initial state A
such as �1,0,0,1,1,…,1�. Considering the input from the
given network structure, we can define fitness Wi on each
node. Therefore, we can define the fitness WA of the state A
by

WA =
1

N
�
j=1

N

Wj
A, �A1�

where Wj
A means fitness at the jth node in the state A. Con-

sider a one-mutant family of the initial state A, in which
there are N neighbor states with Hamming distance one. For
example, let us say one of them is B and define as
�0,0,0,1,1,…,1�. In this example, only the state of node 1 is

different from 1 to 0. Therefore, the difference in input val-
ues between the initial state A and this state B comes from
nodes linked to node 1. This situation provides a difference
in fitness.

Suppose that the degree of node 1 is k1 and denote the k1
nodes linked to node 1 by j1 , . . . , jk1

. The values of nodes
linked to node 1 are given different random numbers Wi�
according to Table I. We then obtain the fitness for the state
B as

WB =
1

N
�
j=1

N

Wj
B =

1

N
�W1� + Wj1

� + ¯ + Wjk1

� + ¯ � .

�A2�

Thus, a genetic mutation in the state of one mutant gives a
change only for the node that the mutation occurred and the
nodes linked to it. Therefore, if we consider only the fitness
difference from the local optimum, then the fitness value of
the one-mutant family that has Hamming distance 1 from the
local optimum state depends upon which node the mutation
occurs. Hence, in the case that there is mutation on node m,
we obtain

�WB�m� =
1

N
��W1 + �Wj1

+ ¯ + �Wjk1
� , �A3�

where �Wj =Wj�−Wj. The left-hand side of Eq. �A3� means
the fitness difference D. To see what it means, let us define
the averaged fitness difference for node m:

�DB�m�� =
1

km + 1
��W1 + �Wj1

+ ¯ + �Wjkm
� . �A4�

We then have

FIG. 4. �Color online� Log-log plot of the tail behavior of the
histogram for scale-free networks of the system size N=1024,
where �k�=2. Here the “quenched” models have been adopted. The
vertical axis means the logarithm of the number of times h when a
particular value of the fitness difference D between a local optimum
and nomv occurs in the rugged fitness landscapes. The horizontal
axis means the logarithm of the fitness difference D. The data for
100 samples are superimposed in figure. We confirm ourselves that

�3.
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Dm = �WB�m� =
1

N
�DB�m���km + 1� . �A5�

From this, if the average �DB�m�� is constant, then Dm is
proportional to km+1. But more generally, there are two con-
tributions: one from random number Wi in �W1+�Wj1
+ ¯ +�Wjkm

and another from degree km. Here, if the ran-

dom numbers are defined by a uniform distribution, then we
can understand that they contribute to the exponent of the
fitness distribution function and the tail of the distribution
function comes from that of the degree �link number�. Be-
cause, since the maximum value of Wi is 1, it is bounded as

��W1 + �Wj1
+ ¯ + �Wjkm

� � km + 1. �A6�

Hence, this provides

�Dm� �
km + 1

N
. �A7�

From the above, in the NK model the statistics of rugged
fitness landscapes is bounded by K. In the SF model, since ki
is distributed by a power law, the statistics becomes the same
power distribution. Similarly, in the exponential fluctuation
distribution, so is the fitness distribution. In this way, the
statistics of fitness is strongly dominated by that of the link
distribution in the network.

APPENDIX B: TAIL BEHAVIOR OF THE SYSTEM
OF N=1024

We show the tail behavior of the histogram in the system
size of N=1024 in Fig. 4. This may support our assertion in
the text. We find again 
�3, but since here the power-law
decay is already obtained for �k�=2, we cannot exclude that
�k�c�2, although such a statement would perhaps only re-
flect finite-size effects.
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